# Ammonia Liquid Chiller Series FX PP, LP, VP 200 –6000 kW ## **Product Information** ### **SERIES OVERVIEW** # AMMONIA LIQUID CHILLER FX P | Capacity range | 200 –350 kW | 450 – 900 kW | 800 –2800 kW | 3300 –5800 kW | |---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------| | Screw Compressor (SC) | Small highintegrated | Medium compact | Large traditional | X-Large traditional | | | $\begin{array}{c} \text{4 Types: C, D, E, G} \\ \text{swept volume } V_{th} \\ V_{th} \text{= 231 375 m}^{3} \text{/h} \end{array}$ | $\begin{array}{l} 4 \text{ Types}: H, L, M, N\\ \text{swept volume } V_{th}\\ V_{th} = 450 \ \ 860 \ m^3/h \end{array}$ | $\begin{array}{c} \text{6 Types: P, R, S, V, W,Y, Z} \\ \text{swept volume V}_{\text{th}} \\ \text{V}_{\text{th}} \text{= 805 2748 m}^3 \text{/h} \end{array}$ | $\begin{array}{c} \text{4 Types: XA, XB, XC, XD} \\ \text{swept volume } V_{th} \\ V_{th} \text{= } 3250 \ldots 5800 \text{ m}^{3} \text{/h} \end{array}$ | | | | | | | | Screw Compreesor Packages (SCP) | SMALL | MEDIUM | LARGE | X-LARGE | | Liquid Chiller | SMALL | MEDIUM | LARGE | X-LARGE | | Evaporator Type | Plate type evaporator | Plate type evaporator | Plate type evaporator | Plate type evaporator | | Working principle | Flooded evaporation | Flooded evaporation | Flooded evaporation | Flooded evaporation | | Liquid separator | horizontal | vertical | vertical | horizontal | | Condenser Type P | Plate type condenser | Plate type condenser | Plate type condenser | Plate type condenser | | Condenser Type L | Air-cooled condenser | Air-cooled condenser | Air-cooled condenser | Air-cooled condenser | | Condenser Type V | Evaporative condenser | Evaporative condenser | Evaporative condenser | Evaporative condenser | | For transportation divided into | 1 fragment | 1 fragment | 3-4 fragments | 4-5 fragments | # DESIGNATION CODE AMMONIA LIQUID CHILLER #### **DESIGNATION CODE** ### Refrigerant | Screw Compressor | Nominal capacity in kW | |------------------|------------------------| | С | 200 | | D | 250 | | Е | 300 | | G | 350 | | Н | 450 | | L | 550 | | M | 650 | | N | 900 | | P | 800 | | R | 1100 | | Screw Compressor | Nominal capacity in kW | |------------------|------------------------| | S | 1300 | | V | 1700 | | W | 2000 | | Y | 2400 | | Z | 2800 | | XA | 3300 | | ХВ | 4200 | | ХC | 5000 | | XD | 5800 | #### **DESCRIPTION OF FUNKTION AND DESIGN** ### AMMONIA LIQUID CHILLER SERIES FX P #### **INTRODUCTION** The standard ammonia liquid chiller programme comprises well-proven components which are assembled to form complete refrigerating systems both for medium and large refrigerating and air conditioning requirements. Main fields of application: - old water for air conditioning - cold brine for air conditioning with combined ice storage operation - cold water for industrial processes - cold brine for industrial processes - (cold) and warm water for heat pump operation On principle, the refrigerant used in the refrigerating systems is ammonia which features a high specific refrigerating capacity, a low energy demand, an attractive price and an environmentally neutral behaviour. Based on the screw compressor series, the ammonia liquid chiller programme covers a refrigerating capacity ranging from 200 to 5800 kW, related to the cold water range. The capacity ranges are determined by the 18 sizes of the Grasso screw compressors. The liquid chiller programme consists of three series which comprise different condenser designs and are operated with flooded evaporator systems on the basis of gravity recirculation. The ammonia liquid chillers are of modular design and consist of the following main modules: - Standard Screw compressor unit - heat exchanger assembly with low-pressure separator and oil return system - low-voltage switchgear installation with control device The modular design of the chillers is guided to the standard series of Grasso screw compressor packages, wich are executed with horizontal oil separators within the SMALL series and vertical oil separators within the MEDIUM and LARGE series. For chillers equipped with SMALL packages is the liquid separator with respect to the package design as well executed in horizontal design. For MEDIUM and LARGE series chillers vertical compact vessels are used for liquid separation. This ensures the compact design of ammonia liquid chillers. For the new X-LARGE size of packages a horizontal liquid separator is used in difference to the vertical oil separator. Solely plate-type evaporators are used as evaporators. Each series is optionally fitted with a standard evaporator, but can also be adapted to specific operating conditions and customer requests, if need be. On the condenser side, the following versions are used: - plate-type condenser PP - evaporative condenser VP - air cooled condenser LP The ammonia chillers 200 – 550 will be delivered as a compact, complete pre-fabricated factory packaged and wired unit, ready for connection on site. The modular design enables a divided delivery in different parts especially from the chiller size 800 up to 5800. The modules will be re-assembled on site under consideration of certain special machine room conditions. The ammonia liquid chillers FX LP and FX VP are delivered completely so that solely the air cooled condenser (FX LP) or the evaporative condenser (FX VP) has to be connected on site. The heat exchangers of the three series are designed for the parameters of a project on both the evaporatorand condenser side. In doing so, the temperature differences are chosen so that the customer requirements are met optimally. If the difference between the evaporating temperature and the temperature of the leaving secondary refrigerant is lower than 5K, the liquid chiller gets the addition HP (High Performance). The standard version of the liquid chillers is equipped with a freely programmable standard logic controller PLC SIMATIC C7-633. All operating and fault signals as well as the process variables can be read from a LCD-display with background lighting. The display is operated via a robust foil keyboard having 6 functionand 24 system keys. The liquid chillers are delivered without refrigerant and oil; they are filled with dry nitrogen (0.5 bar gauge pressure). Each liquid chiller consignment is accompanied by the respective User Documentation which comprises a description of the refrigeration circuit, assembly and commissioning instructions as well as operating and maintenance instructions. For detailed information about the screw compressors and standard screw compressor units specific Product Documentation is available. #### **DESCRIPTION OF FUNKTION AND DESIGN** ### AMMONIA LIQUID CHILLER SERIES FX P #### **FUNCTION** The screw compressor sucks refrigerant gas out of the liquid separator and brought up to condensation pressure. The refrigerant turns to liquid as its cooled in the condenser. Afterwards the liquid is injected back to the liquid separator via a high pressure float valve as expansion device. Inside the liquid separator takes place the separation of the liquid and gaseous phases. The liquid passes in a gravity driven circuit the evaporator. By taking up heat (delivered by the secondary refrigerant) it evaporates and a mixture og gas and liquid is comming back to the liquid separator. During the operation of the screw compressor, oil is injected into the working chamber and then separated again from the refrigerant in the discharge side oil separator. The oil which has heated up in the compressor is cooled in an oil cooler to reach the entry temperature and passes a fine filter. Despite of the highly effective oil separation system, oil penetrates to the low pressure side of the Chiller. A special automatic and maintenance-free oil returning system developed by Grasso returns the oil from the liquid separator back into the screw compressor. This is a basic precondition for a flawless operation of the evaporator system. The capacity control of the screw compressor operates infinitely variable by volume flow control (internal bypass) and thus adapts optimally to the refrigeration capacity being effectively required and ranging from 100% to approx. 15%. The capacity slide is hydraulic driven and activated by 4 solenoid valves. The position of the slide is displayed on the compressor control. #### **SAFETY DEVICES** The ammonia chillers are equipped with a comprehensive software safety chain preventing higher pressures, temperatures and freezing of secondary refrigerant. A suction- and discharge pressure control and a motor current control is dominating the normal capacity control in the way if a limit value is exceeded then the capacity slide is activated into minimum position. Several organizations in different countries require in due to laws and rules extensive additional safety equipment indipendent from software. Following additional safety equipment is required by German TÜV: #### Series FX PP - Overflow valve from discharge- to suction side - Safety pressure limiter (2 independent switches with internal and external reset) - a safety relief valve (with blow off line) is not necessary, because there is a defined refrigerant charge and no vessel can be filled up with more than 90% of liquid refrigerant #### Series FX LP, VP - Safety relief valve (with blow off line, to be connected to the outside by contractor) - Overflow valve from discharge- to suction side - Overflow valve from HP-receiver of thermosyphon oil cooler to LP side - Safety pressure limiter (2 independent switches with internal and external reset) Following additional safety equipment is required if the chiller is delivered according to EN 378 CE marked: ### Series FX PP, LP, VP - a pressure relief device for every vessel, which might be contain liquid refrigerant, within stop valves and a diameter > 152mm. This is not valid for oil separators and oil filters. The pressure relief device is executed as overflow valve. - Safety pressure limiter (2 independent switches with internal and external reset) - a double safety valve with change over valve, (with blow off line, to be connected to the outside by contractor) If delivery is according to EN 378 then all in this rule definitely mentioned documentations will be delivered in the national language where the chiller is errected. All other approvals have to agreed separately. # TYPE FX LP, VP 450 ... 900 WEIGHTS AND CHARGINGS Below mentioned data are valid for following standard conditions: # Secondary refrigerant temperature +12°C/+6°C and condensation temperatures of +35°C (VP) and +45°C (LP) For other conditions there might be divergent data. #### **Dimensions and Weights** | Chiller<br>Type | L (mm) | B (mm) | H (mm) | _ | out charging<br>g) | Operating weight (kg) | | | |-----------------|--------|--------|--------|-----------|--------------------|-----------------------|------|--| | | | | | ST | HP | ST | HP | | | LP, VP 450 | 2800 | 2000 | 2300 | 3650 | 3700 | 3850 | 3950 | | | LP, VP 550 | 2800 | 2000 | 2300 | 3950 | 3950 | 4200 | 4250 | | | LP, VP 650 | 3200 | 2200 | 2800 | 5400 5500 | | 5650 | 5770 | | | LP, VP 900 | 3400 | 2200 | 2800 | 6300 | 6500 | 6560 | 6800 | | ### **Chargings, Ports, Sound pressure level** | Chiller Type | Oil<br>charging | Refrigerant charging | | ns NB | Power<br>(k) | | Sound press. level | | | |--------------|-----------------|----------------------|---------------|-------------------|----------------|----------------|--------------------|-----|------------------| | | (dm³) | (kg) | Cold<br>water | discharge<br>line | liquid<br>line | return<br>line | LP | VP | dB(A) 1m<br>LP*) | | LP, VP 450 | 110 | 95 | 100 | 50 | 50 | 40 | 132 | 110 | 81 | | LP, VP 550 | 110 | 98 | 100 | 50 | 50 | 40 | 160 | 132 | 83 | | LP, VP 650 | 120 | 103 | 100/150 | 65 | 50 | 50 | 200 | 160 | 84 | | LP, VP 900 | 120 | 110 | 100/150 | 65 | 50 | 50 | 250 | 200 | 85 | ST – Standard : ∆T=5K at heat exchangers HP – High Performance: $\Delta T$ <5K at heat exchangers \*) - Sound pressure level for VP see at PP # STANDARD LIQUID CHILLER TYPE FX LP, VP 450 ... 900 #### **PERFORMANCE PARAMETERS** ### **AMMONIA LIQUID CHILLER SERIES FX VP - HIGH PERFORMANCE** | Chiller<br>type | Performance parameters | ( | Cold water inlet-/ | Cold water outlet | t temperatures (°C | ) | |-----------------|------------------------|------|--------------------|-------------------|--------------------|-------| | | in kW | 11/5 | 12/6 | 14/8 | 16/10 | 18/12 | | | Q <sub>o</sub> | 220 | 228 | 235 | 243 | 260 | | VP 200 | P <sub>e</sub> | 41 | 41 | 43 | 43 | 44 | | | Q <sub>c</sub> | 261 | 269 | 278 | 286 | 304 | | | Qo | 258 | 267 | 275 | 285 | 306 | | VP 250 | P <sub>e</sub> | 48 | 48 | 50 | 50 | 51 | | | Q <sub>c</sub> | 306 | 315 | 325 | 335 | 357 | | | Qo | 309 | 320 | 332 | 342 | 367 | | VP 300 | P <sub>e</sub> | 56 | 57 | 57 | 59 | 60 | | | Q <sub>c</sub> | 365 | 377 | 389 | 401 | 427 | | | Q <sub>o</sub> | 365 | 379 | 393 | 405 | 434 | | VP 350 | P <sub>e</sub> | 67 | 67 | 68 | 70 | 71 | | | Q <sub>c</sub> | 432 | 446 | 461 | 475 | 505 | | | Qo | 467 | 485 | 502 | 521 | 555 | | VP 450 | P <sub>e</sub> | 81 | 82 | 82 | 83 | 87 | | | Q <sub>c</sub> | 548 | 567 | 584 | 604 | 642 | | | Qo | 551 | 571 | 592 | 610 | 654 | | VP 550 | P <sub>e</sub> | 96 | 96 | 97 | 100 | 102 | | | Q <sub>c</sub> | 647 | 667 | 689 | 710 | 756 | | | Q <sub>o</sub> | 701 | 726 | 752 | 774 | 828 | | VP 650 | P <sub>e</sub> | 122 | 123 | 124 | 128 | 130 | | | Q <sub>c</sub> | 822 | 849 | 876 | 902 | 959 | | | Qo | 832 | 862 | 893 | 920 | 985 | | VP 800 | P <sub>e</sub> | 146 | 147 | 148 | 153 | 156 | | | Q <sub>c</sub> | 978 | 1009 | 1041 | 1073 | 1141 | | | $Q_{o}$ | 896 | 929 | 962 | 990 | 1059 | | VP 900 | P <sub>e</sub> | 157 | 158 | 160 | 165 | 167 | | | Q <sub>c</sub> | 1052 | 1087 | 1122 | 1155 | 1227 | | | $Q_{o}$ | 1074 | 1113 | 1153 | 1188 | 1272 | | VP 1100 | $P_{\mathbf{e}}$ | 189 | 190 | 192 | 198 | 201 | | | Q <sub>c</sub> | 1263 | 1303 | 1345 | 1386 | 1473 | | | $Q_{o}$ | 1332 | 1380 | 1429 | 1473 | 1578 | | VP 1300 | P <sub>e</sub> | 234 | 236 | 238 | 245 | 249 | | | Q <sub>c</sub> | 1566 | 1616 | 1667 | 1718 | 1827 | | | $Q_o$ | 1724 | 1785 | 1848 | 1903 | 2036 | | VP 1700 | P <sub>e</sub> | 292 | 294 | 296 | 305 | 310 | | | Q <sub>c</sub> | 2016 | 2079 | 2144 | 2208 | 2346 | | | Q <sub>o</sub> | 2413 | 2499 | 2587 | 2665 | 2851 | | VP 2400 | P <sub>e</sub> | 408 | 411 | 414 | 428 | 435 | | | Q <sub>c</sub> | 2821 | 2910 | 3001 | 3093 | 3286 | | | Qo | 2889 | 2992 | 3097 | 3190 | 3413 | | VP 2800 | P <sub>e</sub> | 489 | 492 | 496 | 512 | 520 | | | Q <sub>c</sub> | 3378 | 3484 | 3593 | 3702 | 3933 | | | $Q_o$ | 3417 | 3541 | 3666 | 3775 | 4037 | | VP 3300 | P <sub>e</sub> | 580 | 585 | 591 | 610 | 618 | | | Q <sub>c</sub> | 3994 | 4126 | 4258 | 4384 | 4658 | $\begin{array}{c} Q_{0} \\ Q_{c} \\ P_{e} \end{array}$ Refrigerating capacity Condensing capacity at wet bulb temperature = 21°C Power consumption #### **REMOTE CONDENSER IN WINTER OPERATION** If a chiller with remote condenser is not in operation during winter time, that means outside temperature is lower than machine room temperature, all the refrigerant can gather in the condenser. The low temperature keeps the refrigerant in the condenser. If the chiller is switched on again in this situation the refrigerant is missed on the suction side. The compressor has not enough to compress, no discharge pressure will be generated and the liquid won't push off the condenser. The suction pressures decreases and the result is a suction pressure failure. We suggest as remedy, shut up the in- and outlet of the condenser during longer standstill of the chiller to prevent liquid moving to the condenser. #### **Proposal** #### Chiller with evaporative condenser and thermosyphom oil cooling ### Chiller with air cooled condenser and thermosyphon oil cooling 08.01.02/ 0 060\_600e.doc - 1/3 #### Chiller with remote air cooled condenser and separate circuit for oil cooling Motor driven valve inlet condenser (KE) and motor driven valve outlet condenser (KA), and additional for suggestion 3 motor driven valve oil cooler inlet (ÖKE) and motor driven valve oil cooler outlet (ÖKA), are controlled depending on compressor operation and ambient outside temperature. Compressor ON motor driven valve OPEN Compressor OFF and outside tempertaure < setpoint motor driven valve CLOSED In this control mode is a feedback signal from the motor driven valves required. Please find on the following page the minimal required heights of the condenser for thermosyphon oil cooling and keep it consequently. For the calculation of the minimal height H $_{min}$ take into consideration the entire pressure loss $\Delta p$ in the circuit Condenser – Receiver - Condenser via pipes, fittings, valves. $$H_{min} \ge \Delta p / \rho \bullet g$$ $\Delta p$ pressure loss in Pa $\rho$ density of the refrigerant $g$ gravity The vapour return line of the oil cooler must be connected as close as possible to the condenser inlet. (see Fig. 1 and 2) 08.01.02/ 0 060\_600e.doc - 2/3 065 stop valve oil cooler 090 stop valve oil charge and drain 200 refrigerant cooled oil cooler 205 thermosyphon sight glass 210 oil drain 215 thermostatic 3-way valve 220 stop valve bypass oil cooler 2400 HP receiver 2405 vent valve S safety valve port # Approximate values for the required height difference between HP receiver and condenser | pressure loss of<br>condenser<br>in Pa | minimal required<br>height differnce<br>in m | |----------------------------------------|----------------------------------------------| | | | | 5000 | 0,9 | | 10000 | 1,9 | | 20000 | 3,7 | | 30000 | 5,5 | | 40000 | 7,3 | | 50000 | 9,1 | | | | #### recommended velocities liquid line (pipe 1) 0.3 - 0.8 m/svapour line (pipe 2) 2.0 - 6.0 m/s #### **Attention** Additional fittings and longer horizontal pipework will increase the height difference. 08.01.02/ 0 060\_600e.doc - 3/3 The oil pump of types LG and KF are external gear pumps. They are particularly suited to conveying refrigerating machine oil. The shaft is sealed by means of a maintenance-free slide ring seal. #### 1. OIL PUMPS LG TYPE | Туре | delivery rate<br>l/min | protection<br>class | speed<br>rpm | capacity<br>kW | rated current<br>A | ident number | |---------------|------------------------|---------------------|--------------|----------------|--------------------|--------------| | LG 1 / 25 | 16 | IP 54 | 1400 | 0,55 | 1,6 | 456 098 044 | | LG 2 / 35 | 40 | IP 54 | 1410 | 1,1 | 2,8 | 456 098 043 | | LG 2 / 65 | 76 | IP 54 | 1405 | 1,5 | 3,5 | 456 098 022 | | LG 3 / 110 | 150 | IP 54 | 1450 | 3,0 | 6,8 | 456 098 023 | | LG 4 / 110 So | 220 | IP 54 | 1450 | 5,5 | 11,4 | 456 098 051 | | LG 4 / 155 So | 310 | IP 54 | 1450 | 7,5 | 15,1 | 456 098 053 | #### 2. OIL PUMPS KF TYPE | Туре | delivery rate<br>l/min | protection<br>class | speed<br>rpm | capacity<br>kW | rated current<br>A | ident number | |-----------|------------------------|---------------------|--------------|----------------|--------------------|--------------| | KF 10 | 14 | IP 54 | 1450 | 0,55 | 1,6 | 456 098 020 | | KF 25 | 34,6 | IP 54 | 1410 | 0,75 | 2,1 | 456 098 042 | | KF 3 / 63 | 85 | IP 54 | 1420 | 1,5 | 3,4 | 456 098 030 | | KF 3 /112 | 153 | IP 54 | 1430 | 3,0 | 6,7 | 456 098 031 | | KF 4 /150 | 212 | IP 55 | 1435 | 4,0 | 8,4 | 456 098 045 | | KF 5 /200 | 281 | IP 55 | 1440 | 5,5 | 11,0 | 456 098 049 | ### 3. APPLICATION IN LIQUID CHILLERS Standard Chiller: External oil pump Excl.: FX PP 200 ... 900 NH<sub>3</sub> (FX Small and FX Medium) | Series | Screw | | Swe | ept Volume in l/ | min | | |---------------|-------------|----|----------|------------------|----------|----------| | | Compressor | 16 | 34,6 40 | 76 85 | 150 | 212 220 | | FX Small | C, D, E, G | X | X | - | - | - | | FX Medium | H, L | - | X | X | - | - | | | M, N | - | - | X | X | - | | FX Large | P, R, S | - | - | Standard | X | - | | | V, Y, Z, XA | - | - | - | Standard | X | | FX X-Large | XB, XC, XD | - | - | - | - | Standard | | FX Duo Small | C, D, E, G | - | Standard | X | - | - | | FX Duo Medium | H, L | - | - | Standard | X | - | | | M, N | - | - | - | Standard | X | # AMMONIA LIQUID CHILLER SERIES FX PP, LP, VP 200... 5800 NH3 ### Measuring-surface sound-pressure level Distance to the machine surface: 1 m (A-sound level at free field conditions on reflecting surface) for Ammonia Liquid Chillers (1 compressor and 1 driving motor) | Motor | | Screw Compressor/<br>Ammonia Liquid Chiller | | | | | | | | | | |---------------------|-----------|---------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--| | at 40°C<br>Pe in kW | C/<br>200 | D/<br>250 | E/<br>300 | G/<br>350 | H/<br>450 | L/<br>550 | M/<br>650 | N/<br>900 | | | | | 45 | 78 | 78 | 78 | 78 | 78 | 78 | | | | | | | 55 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | | | | | | 75 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | 79 | | | | | 90 | | 80 | 80 | 80 | 80 | 80 | 80 | 80 | | | | | 110 | | | 80 | 80 | 80 | 80 | 80 | 80 | | | | | 132 | | | | 81 | 81 | 81 | 81 | 81 | | | | | 160 | | | | | 83 | 83 | 83 | 83 | | | | | 200 | | | | | | 84 | 84 | 84 | | | | | 250 | | | | | | | 85 | 85 | | | | - Without secondary sound protection. - Reduce the above mentioned values by 25-30 dB in case of totally machine casing. - Measuring-surface sound-pressure level depends on the package type and especially on the driving motor (manufacturer, type, degree of protection). Because of this the values are guide values, which have to be confirmed by project specifications. # AMMONIA LIQUID CHILLER SERIES FX PP, LP, VP 200... 5800 NH3 ## Measuring-surface sound-pressure level Distance to the machine surface: 1 m (A-sound level at free field conditions on reflecting surface) for Ammonia Liquid Chillers (1 compressor and 1 driving motor) | Motor | | Screw Compressor/<br>Ammonia Liquid Chiller | | | | | | | | | | |---------------------|----------|---------------------------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------| | at 40°C<br>Pe in kW | P<br>800 | R<br>1100 | S<br>1300 | V<br>1700 | W<br>2000 | Y<br>2400 | Z<br>2800 | XA<br>3300 | XB<br>4200 | XC<br>4800 | XD<br>5800 | | 160 | 82 | | | | | | | | | | | | 200 | 83 | 83 | | | | | | | | | | | 250 | 83 | 83 | 83 | | | | | | | | | | 315 | | 84 | 84 | 84 | 84 | | | | | | | | 355 | | | 85 | 85 | 85 | 85 | | | | | | | 400 | | | | 85 | 85 | 85 | 85 | | | | | | 450 | | | | 85 | 85 | 85 | 85 | 85 | | | | | 500 | | | | | | 86 | 86 | 86 | 86 | | | | 560 | | | | | | 86 | 86 | 86 | 86 | 86 | | | 630 | | | | | | 87 | 87 | 87 | 87 | 87 | | | 700 | | | | | | | 87 | 87 | 87 | 87 | 87 | | 710 | | | | | | | 87 | 87 | 87 | 87 | 87 | | 800 | | | | | | | 87 | 87 | 87 | 87 | 87 | | 900 | | | | | | | | 88 | 88 | 88 | 88 | | 1100 | | | | | | | | | 89 | 89 | 89 | | 1600 | | | | | | | | | | 90 | 90 | - Without secondary sound protection. - Reduce the above mentioned values by 25-30 dB in case of totally machine casing. - Measuring-surface sound-pressure level depends on the package type and especially on the driving motor (manufacturer, type, degree of protection). Because of this the values are guide values, which have to be confirmed by project specifications. ### **MODULAR CONTROL** | Туре | Grasso System Contro | ol (GSC) | | | | | |----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | General | Programmed control, that is adapted to specific requirements of Packages and Chillers. The number of analogue and binary inputs and outputs is adapted the demand by selecting the appropriate components. Programming is carried out using defined and tested software modules that The contents of this documentation and the enclosed drawings, sketches and diagrams are intended only for plant users and operating personnel. They may be neither duplicated nor divulged to third parties or firms without written consent. The technical data, figures, dimensions and weights presented in the documentation may be more closely defined or otherwise specified as a result of contractual agreement and are binding only after our confirmation in writing. The stipulations set forth in the contract have precedence over those in this documentation. We reserve all rights to introduce technical modifications in the course of further development.are created and organized by Grasso. Changes in these software modules are not permissible, as a rule. Package and Chiller control organization: 1. Ensuring unit/chiller safety by monitoring of pressure and temperatures. 2. Running a fail-safe startup and shutdown routine. 3. Screw compressor capacity control, either manually or automatically. | | | | | | | Specifications | Model type: | nt injection into the evaporator (for chillers DX Series only). Standard housing with an engineered modular Grasso configuration and a standard terminal. | | | | | | | Power supply: | 115/ 230 V AC, 50/ 60 Hz | | | | | | | Control and display unit: | Controls are installed in the door of the housing and labelled. The terminal has a 4-line text display. All analogue process data are displayed at the terminal. Texts can be displayed in various languages. | | | | | | | Parameterization: | Process parameters are parameterized, after having entered a password, from the controls at the terminal to adapt the controller to the process. | | | | | | | Behaviour after power return: | Return to the state prior to power failure. | | | | | | | Elapsed-time meter: | Available software function. | | | | | | Analog inputs | All process variables are processed in analogue mode.<br>Sensor inputs are designed for standadized input signal (4 – 20) mA. | | | | | | | Digital inputs | Suitable for 24 V DC. | | | | | | | Analog outputs | Control slide position as non-floating signal (4 – 20) mA. | | | | | | | Digital outputs | Floating contacts for signal transfer to L. V. Switching Station and Master Control. All solenoid valves are designed for 24 V DC. | | | | | | | Application | No maritime or airborne applications (maritime application on request). | | | | | | | Controlled variable | process temperature in °C (Standard – evaporating temperature or temperature of secondary refrigerant). Controlled by a three-position controller. Set point and neutral zone can be parameterized. | | | | | | | Set point adjustment | Setpoints can be adjusted through the unit controller by a higher-level master control using analog signal (4 – 20) mA. | | | | | | # MODULAR CONTROL GRASSO SYSTEM CONTROL (GSC) | Start-up modes | MANUAL | SC unit/ chiller is switched ON / OFF manually, independently of the refrigerating demand. | | | | | | |---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | | AUTO | SC unit/ chiller is switched ON / OFF automatically depending on local refrigerating demand. | | | | | | | Operating modes | MANUAL | Manual key-operated capacity control (the control slide is shifted manually). | | | | | | | | AUTO | Automatic setpoint-dependent capacity control (the control slide is shifted automatically). | | | | | | | Control modes | LOCAL | SC unit/ chiller can be operate independently (no master control). | | | | | | | | CENTRAL | SC unit/ chiller is controlled by master control only. | | | | | | | Fault massages | Each fault is displayed as an on-line message and stored in a histogram buffer. A fault log printer can be connected. | | | | | | | | Sequential control | Simple sequential routine can be achieved by using a master control via floating contacts. | | | | | | | | Communication | with a higher level control (master control) | | | | | | | | | All status messages and all analogue data sent to a higher-level master control via a MPI interface (standard) or via a PROFIBUS-DP (Master-Slave) interface (optionally). | | | | | | | | via<br>BUS-coupling | Up to 32 SCP/ chiller controls can be connected to a higher-level master control using this method. | | | | | | | | | The master control must know the MPI or PROFIBUS-DP Master-Slave protocol. | | | | | | | | | The master of | control must kno | w the MPI or PROFIBUS-D | PP Master-Slave protocol. | | | | | via | The master of | | w the MPI or PROFIBUS-D | Chiller/ SCP ready | | | | | via<br>floating contacts | | | Status messages | Chiller/ SCP ready<br>Chiller/ SCP fault.<br>ition may be passed on as an | | | | | | | el control: | Status messages The control slide pos | Chiller/ SCP ready<br>Chiller/ SCP fault.<br>ition may be passed on as an | | | | | | To higher-leve | el control:<br>evel control: | Status messages The control slide posanalogue signal usin | Chiller/ SCP ready Chiller/ SCP fault. sition may be passed on as an g a buffer amplifier. Chiller/ SCP ON/ OFF Fault acknowledgement Increase/ reduce SC capacity. | | | | | floating contacts | To higher-leve | el control: evel control: rd) or PROFIBUS- | Status messages The control slide pos analogue signal usin Status messages | Chiller/ SCP ready Chiller/ SCP fault. sition may be passed on as an g a buffer amplifier. Chiller/ SCP ON/ OFF Fault acknowledgement Increase/ reduce SC capacity. | | | | | floating contacts Bus coupling | To higher-leve | el control: evel control: rd) or PROFIBUS- escriptions | Status messages The control slide pos analogue signal usin Status messages DP Master-Slave (optiona | Chiller/ SCP ready Chiller/ SCP fault. sition may be passed on as an g a buffer amplifier. Chiller/ SCP ON/ OFF Fault acknowledgement Increase/ reduce SC capacity. Ily) French | | | | # MODULAR CONTROL GRASSO SYSTEM CONTROL (GSC) In-/ output configuration for Standard Ammonia Liquid Chiller Series FX PP, LP, VP NH<sub>3</sub>, including all types of optional equipment. <sup>\*</sup> optional equipment # MODULAR CONTROL GRASSO SYSTEM CONTROL (GSC) | Operating<br>and infor-<br>mation<br>level | <b>-</b> | Command Chiller ON Command Chiller OFF Control Mode CENTRAL/ LOCAL Starting Mode AUTO/ MANUAL Operating Mode AUTO/ MANUAL Command Capacity increasing Command Capacity decreasing Command Failure acknowledgement | G<br>S<br>C | Signal Chiller Operation Signal Centralized Alarm Signal Centralized Warning Operating messages Fault messages Actual values | 8 | Operating<br>and infor-<br>mation<br>level | |--------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------| | | | Command Lamp test | | Setpoint values | | | # LOW-VOLTAGE SWITCHGEAR INSTALLATION WITH INTEGRAL CONTROL GSC LIQUID CHILLERS FX PP, LP, VP 200 ... 5800 As a standard, each Grasso liquid chiller FX PP, LP, VP comprises a low-voltage switchgear installation (IP54) with integral freely programmable logic controller (PLC) GSC. The software functions and the assignment of inputs/outputs of the GSC control are described separately. # THE STANDARD SCOPE OF DELIVERY FOR THE LOW-VOLTAGE SWITCHGEAR INSTALLATION FOR LIQUID CHILLERS FX COMPRISES: - Main switch (load break cut-out) - star/delta combination for drive motor - motor fuse - motor current transformer - motor winding protector - PLC hardware - oil pump contactor - control transformer with double control fuse on primary and secondary side - 24 V DC current supply - emergency Off button - signal lamp compressor running - signal lamp fault - signal lamp warning #### CONTROL #### **Main functions:** - 1. Control of supply temperature controlled variable is the supply temperature of the secondary refrigerant with the suction- and condensing pressure as well as the motor current limitation being active. - 2. Electronic protection of packages and storage of operating hours limit values are factory-preset. All parameters can be changed via the terminal depending on the password. - 3. Releasing contacts: for the secondary refrigerant pumps and the condenser system (no regulation of the condensing pressure). - 4. Operational signals, all analogue values are indicated - 5. Fault signals for in-service monitoring, signal lamp and text. - 6. Floating signalization of conditions of the liquid chiller for the control station of the building. #### Main operational functions on foil keyboard: ON /OFF **DISPLAY MENU** Control mode CENTRAL/LOCAL Starting mode AUTO/MANUAL Operating mode MANUAL/AUTO INCREASE capacity DECREASE capacity